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A direct method has been developed to find axisymmetric magnetohydrodynamic (MHD) 
equilibria in Hamada coordinates. The problem is reduced to a system of ordinary differential 
equations for poloidal Fourier harmonics of the spatial coordinates of flux surfaces as 
functions of Hamada coordinates. These can be used to obtain metric tensor elements and 
magnetic field components as functions of Hamada coordinates, suitable for direct input into 
stabiiity or transport codes. Equilibria with prescribed outer boundary shape can be found, 
given a suitable pair of plasma profiles, such as the pressure and safety factor as functions of 
poloidal flux. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Studies of magnetohydrodynamic stability and transport are often facilitated by 
the use of a flux coordinate system in which one of the coordinates is constant over 
each flux surface [l-l 1 J. For axisymmetric toroidal plasmas the starting point of 
many such calculations is the determination of the solution to the MHD 
equilibrium equation Vp = J x B, followed by a mapping procedure which expresses 
this solution in terms of flux coordinates [lo, 111. Recently, however, several 
techniques have been developed in which the flux coordinates can be obtained 
directly [ 12-15,201. The variational methods are useful in situations where it is not 
necessary to prescribe the form of the Jacobian or to use a coordinate system with 
straight magnetic field and current density lines. 

Hamada coordinates are widely used in the theory of MHD instabilities of 
toroidal plasmas [l-9, 161. In this coordinate system the lines of magnetic field and 
current density both appear to be straight (their contravariant components are 
uniform over each magnetic surface) and the Jacobian is uniform over each 
magnetic surface. These features lead to a more straightforward and accurate 
representation of the partial differential operators used in stability analysis. In the 
original definition of Hamada coordinates [l, 21 the Jacobian was taken to be 
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unity throughout the domain. However, the essential features of Hamada coor- 
dinates are retained if we choose the Jacobian to be a function of the flux coor- 
dinate V alone. The derivation can be modified for a Jacobian equal to unity or for 
other choices of Jacobian, if desired. 

In numerical work involving Hamada coordinates, expressions are usually 
needed for the metric tensor elements (g,,) and the spatial coordinates (R, Y, 4) as 
functions of the Hamada coordinates (V, 6, 0. For example, in computation of 
saturated tearing mode amplitudes in axisymmetric toroidal equilibria [9], the 
poloidal Fourier harmonics of the metric tensor elements, as functions of the 
Hamada coordinates, are needed with enough accuracy to resolve fine details of the 
background pressure and current profiles, which are functions of V alone. With this 
type of appIication in mind, we have developed and implemented a direct method 
of finding Hamada coordinates in axisymmetric MHD equilibria. The problem is 
reduced to the solution of ordinary differential equations for the poloidai Fourier 
harmonics of R and Y and the components of the magnetic field as functions of the 
Hamada coordinate V. By using an adaptive ordinary differential equation solver, 
the accuracy and resolution in V can be adjusted as needed. The metric tensor 
elements can then be obtained directly. 

To define Hamada coordinates (V, 8, 0, consider a static, scalar pressure MHD 
equilibrium 

Vp=JxB, (1) 

p,J=VxB, (2) 

V.B=O, (3) 

in which the magnetic field lines lie on a simply nested set of toroidal surfaces, 
called magnetic surfaces. Let coordinate V be a surface quantity (uniform over each 
magnetic surface) which increases monotonically from the magnetic axis outward, 
so V can be used to label magnetic surfaces. Any such surface quantity will do, but 
we will make a convenient specific choice later in this paper. Let 8 be an angle-like 
variable which increases by 271 the short way around the toroid, while [ is an angle- 
like variable which increases by 277 the long way around the toroid. For Hamada 
coordinates, the variables 8 and c are chosen so that the Jacobian is a surface quan- 
tity, 

y=(vv~vexv~)-‘=$(v), (4) 

and the contravariant components of both the magnetic field and current density 
are surface quantities : 
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It can be shown that these conditions (4)-(6) are all consistent with the equilibrium 
conditions [l-3] and, in general, there is enough freedom to satisfy these con- 
ditions in axisymmetric toroidal equilibria. In this paper, we will consider only 
axisymmetric equilibria, in which [ is an ignorable coordinate. 

2. HAMADA COORDINATE EQUATIONS 

For axisymmetric toroidal equilibria, we seek expressions for the polar coor- 
dinates (R, Y, #), where R is the major radius, Y the vertical position, and $ the 
toroidal angle, in terms of Hamada coordinates (V, 8, c) 

R = R(O, V), (7) 

Y= Y(t), V), (8) 

i=#+G(O, V). (9) 

Both [ and 4 are ignorable coordinates with period 271. From VR = R, VY = Y, 
and V4 = J/R, it follows that 

vv= gli-fp 
( ):‘( 

aRar aYaR 
ayae-avae ) 

) 

V@= ++gv p 
( )M 

aitar aYaR ----_ 
avas > avae ' 

v~=;~+~vv+~ve, 

and 

fr(VV.VBxV[))‘=R g&g;)=y(V). 
( 

From Eq. (2), the contravariant components of the current density are 

aB, as* 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Using a/at = 0, Eq. (14) implies that B, is a surface quantity which can be shown to 
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be proportional to the total poloidal current passing around the toroidal flux sur- 
race 

where $ is the stream function defined by 

B=V& xV$+Bpfi 

Eq. (15) relates B, to Jo, 

Note, 

and that ly = 274 is the poloidal flux. 
In order to use Eq. (16) we need to relate the covariant components B,, B,. to 

the contravariant components B’, Bc by use of the metric tensor 

g,,~gyo=V8XV~~v~XV~/2 
dR dR dY dY aGaGRz 

-- 
3F%i+FB+dva8 3 

g,, = ~Vvxve~2~2=R2, 

gei =g,, 4qxvv~vvxv8p 

EG =-- 
RI?? R2, 

g,,[ =g,, =VBXV~~WXVB~~ 

(22) 

(23) 

(24) 

(25) 

= 232. (26) 
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Since Bv is identically zero, only five metric tensor elements are needed to relate 
(BY, B,, B,) to (Be(V), B5( V)). Using 

Br( I’) = -g R2Bs( I’) + R2Br( V) 

we can show 

B,=(~~~‘+l~l’)Be(Y)-~B~(Y), 

B,= 
( 

;Fv+$g B”(V)-gvBc(V). 
) 

The equations needed for Hamada coordinates then follow from Eq. (16) 

$[( Igl*+ lgl’) ~o(~)]-$[f&$+t$a By 

and from the condition that the Jacobian be a surface quantity 

aYaR aRar 
=%(V. 

(27) 

(28) 

(29) 

(30) 

(31) 

Equations (19), (27), (30) and (31) determine R, Y, G, Be, BC and B, if JC( V) and 
p(V) are considered to be given functions of V. Dividing Eq. (27) by R* and taking 
a flux surface average 

( . . . ) E & I;= d(j. . . , (32) 

yields 

BI(V)= $ B,(V). 
c > 

(33) 

Equation (27) can then be used to eliminate G(0, V) from Eq. (30). The force 
balance equation (1) merely relates contravariant components of current and 
magnetic field to dp/dV 

f( V)@(V) Bc( I’) - Jc( I’) Be( I’)) = $. (34) 
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Equations (19), (20), (27) and (34) can be used to write the source term of Eq. (30) 
into the form commonly used in the Grad-Shafranov equation 

This is the appropriate equation to use, along with Eq. (20), when p($) and Z($) 
are given functions either of $ or the surface label V. 

In many situations it is more convenient [17] to use the safety factor q, instead 
of the toroidal field function Z, where 

BW B,(V) U/R2) dV=gB(= Bet V 
Equation (36) can then be rearranged to the form 

(36) 

= - PO P’( 0 

and Eq. (36) differentiated to give 

(38) 

These two equations, along with Eqs. (31) and (20), can be integrated to give B, 
(i.e., I), Be, R and Y when p’(V) and q(V) are prescribed functions of V, or, with 
some modifications, as functions of II/. 

3. POLOIDAL HARMONIC EQUATIONS 

In order to reduce appropriate sets of equations to a system of ordinary differen- 
tial equations in V, which can be solved to an arbitrarily high degree of accuracy, 
we expand R, Y and G in poloidal Fourier harmonics 

R(8, V) = f R,( V)e’“‘, (39) 
ml= -cc 

Y(e, V)= f i Y,( V) eime, 
In= -00 

G(0, V) = 2 iG,( V)e’“‘. 
m = IL, 

(40) 

(41) 
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The Jacobian equation (31) can then be written either in the form of a triple con- 
volution 

or, by bringing l/R to the right hand side of Eq. (31), in the simpler form of a two 
term convolution 

f m[-YmR:,~,(V)+R,Y:,~,(V)]=~(V) 
ml= -5 

In the latter case, the Fourier harmonics of l/R(O, V) can be found either by Fast 
Fourier Transforms or by solving the system of linear equations resulting from the 
convolution of (l/R(B, V)) R(8, V) = 1. 

Fourier harmonics of the force balance equation (35), take the form 

2 m(2m-n)(R,R:,-, - Y,,,Ynp,) B”(V) 
??I= -cc 

-m(n-m)(R,R,..-, - Y,Y,p,) B”(V) 

= -4(v)PozJ’($)~tl,o (44) 

If Eq. (35) were rewritten, with the factor R2 multiplied through, before taking 
Fourier harmonics, the Fourier convolutions on the left-hand side of the resulting 
harmonic equation would be more complicated. The alternative of using R2 rather 
than R as the choice of variable has yet to be fully explored but this does not seem 
to be a necessary refinement. 

Equation (27) can be used to find the Fourier harmonics of G 

B,( V 
pqT)’ 

in #O, (45) 

which are needed only for determination of the metric tensor elements g,( and g,. 
If the plasma equilibrium shape has a reflection symmetry across the midplane, 

then the harmonic coefficients are real-valued and obey the conditions 

Re, = R,, Y-, = -Y,, Gp,,, = -G,. (46) 

The harmonic expansions can then be written 

R(B, V) = R,(V) + f 2R,( V) cos(mt3), 
m=l 

(47) 
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Y(e, V) = 2 2Y,( V) sin(m@, (48) 
PI=1 

G(0, V) = f 2G,,,( V) sin(&). (49) 
m=l 

Note the factors of 2, which makes this different from the notation used in 
Ref. [13]. Although this reflection symmetry, which is common in tokamaks, will 
be used as a matter of convenience in the rest of this paper, it is not essential to 
either the development or the implementation of the method presented. 

For each set of given functions (JO, Jr or p’, I or p’, q) the appropriate transfor- 
med equations can be written as a set of first order equations, linear in the 
derivatives with respect to V. Our algorithm for the direct determination of 
Hamada coordinates consists of numerically transforming these equations (for 
example, Eqs. (43) and (44)) into the form 

-&( V = S,&L..., R,+,M, Y, ,..., Y,, Be, B,) (m = 0, l,...) M), (50) 

-$ Y,n( V = S y,(Ro,..., R,, Y, ,..., Y,, Be, 4) (m = 0, l)..., M), (51) 

$ Be( V) = Sp(RO ,..., R,, Y, ,..., Y,, Be, &I, (52) 

$,( V = SAR,,..., R,, Y, ,..., Y,, Be, &), (53) 

together with Eq. (20) at each step in the numerical integration of the equations. 
If a sufficiently large number of harmonics are considered, any of several methods 

of truncating Eqs. (43) and (44) work about equally well. If only a few harmonics 
are considered, we have found it best to take M+ 1 Jacobian equations (43) and 
M- 1 force balance equations (44), since this choice emphasizes the most dominant 
set of coefficients in the case of a nearly circular cross section plasma. 

4. NEAR THE MAGNETIC AXIS 

We have chosen to use a Jacobian with the form 

f(U=W (54) 

where C is a constant which is proportional to the total volume of the plasma (in 
particular C = Volume/(27c*) if 0 < I’< 1 within the plasma). Other functional forms 
of V could be chosen for the Jacobian, including the original choice of a constant 
[ 1,2]. However, the order of the singularity at V= 0 may be changed and one 
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would have to take this into account in carrying out the analysis below. With the 
choice, Eq. (54), for the Jacobian, the contravariant components of the magnetic 
field, Be and Br, go to non-zero constants near the magnetic axis. In the circular 
cylinder limit, the variable V becomes proportional to the minor radius (not the 
volume). The equations (50)-(53) have a singular point at V= 0 and they are 
integrated outwards from a very small value of V= 6V. However, with arbitrarily 
chosen starting values of R,(6V) (m = O,..., M), Y,,,(6V) (m = l,..., M), B’(6V) and 
Br(dV), one may obtain solutions which are not acceptable physically. This occurs 
partly because the Jacobian will be determined by a choice of all the R,‘s and the 
Ym’s. It is important therefore to constrain the choice of starting values so that 
these unacceptable solutions are eliminated. Physically reasonable solutions are 
those for which, near the magnetic axis (V-O), 

R,(V)- VI”” (55) 
and 

Y,(V)” V’“’ (56) 

(see Ref. [ 133). As a first step it is useful to scale these variables and set up the set 
of equations (50) and (51) as differential equations for the variables r,(V) and 
y,(V), defined via 

R (V)=Vl”‘r (V) m m (57) 

and 

Y m (V)= V’“‘y m (V) (58) 

and to look for solutions for which the r,‘s and ym’s are approximately constant 
near V= 0. In practice this scaling assists in maintaining numerical accuracy since 
r,(V) and y,(V) only vary slowly over the whole of the integration interval. 

In order to illustrate the problem in a special case, consider the truncation of 
Eq. (50)-(52) with M= 1 for the simple case where JI( V) = Jr = constant and 
Je( V) = 0. Near V= 0, the truncated equations are 

aR* w 
2y, - + 2R, - = CV/R,,, av av 

2$((R;+ y:) Be)=poJCCV, 

and B, = constant. 

(62) 
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With the change of dependent variables, Eqs. (57) and (58), these can be 
rearranged as 

dy, C-4r,r, Yl 
dt/= 4r,r, V ’ 

dBB PLO J’C (C-4rorl Y,) 
Y7= ~hh-: + Y:) 2ro(r:+Y:)V 

(66) 

Solutions of these equations near V= 0 for which rO, r,, y, and Be -constant are 
only possible if the constraints 

4r,r, y, = C (67) 

and 

are satisfied at V = 0, by the appropriate choice of, e.g., y, and Be or by the choice 
of Be and the constant C. If these constraints are satisfied the solution of Eqs. 
(63)-(66) corresponds to a straight elliptical plasma column with R = 
r0 +r, Vcos8, Y= y, I/sin0 and B’=constant (ro, rI, y, constant). 

The REDUCE computer program [IS] was used to analyse the general set of 
equations for larger numbers of Fourier harmonics and it was shown that the 
singular behaviour can be eliminated in general by introducing further constraints. 
However, for increasing M, these rapidly become intractable and there appears to 
be no systematic algorithm to impose the constraints analytically. In practice, 
therefore, the constraints are imposed numerically by choosing r,,, rl ,..., rM and y, 
for an arbitrarily small value of 6V and then searching for values of y2,..., yw, Be 
and C which minimize sngular behaviour. The conditions used, that the sum of the 
squares of the derivatives of r,,, rl ,..., r,,,, y, ,..., y, and Be are minimized, effectively 
eliminate the singularities. It was noted, in addition, that if values of the y’s, etc., 
are chosen which do not satisfy the constraint conditions, then the differential 
equation solutions undergo a rapid transient and then integrate smoothly outward. 
For larger values of V these solutions differ only slightly from the solutions for 
which the constraints were applied. Thus the overall numerical error in the 
solutions for which the constraint conditions are not exactly satisfied is in practice 
very small. 

Analysis of the origin of one of the constraint equations gives some insight to the 
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relationship between the Fourier harmonics of R(B) and Y(0) and the parameter C. 
If the variable V is chosen to be in the range (0, 1) in the plasma, then 

Plasma volume = (2a)2 j’ y(V) dV 
0 

= (2742 c/2. 

Alternatively, 

Plasma volume = (2n) jlp,.,,. R dR dY 

= (27r) jin R(B) Y(e) T de, 

i.e., 

C=f j; R(B) Y(B)yde, 

(69) 

(70) 

(71) 

This is to be equivalent to Eq. (67) when the Fourier series for R(8) and Y(e) are 
truncated at M = 1. Using C, rather than y,, as one of the variables used to satisfy 
the constraints enables us to automatically choose the scaling of V so that I/= 1 on 
the plasma surface. 

5. MATCHING THE OUTER SHAPE OF THE PLASMA 

Any solution of Eqs. (5Ot(53) which satisfies the constraints at V-0 represents 
a plasma equilibrium in Hamada coordinates. In order to find a particular 
equilibrium, however, it is frequently desirable to be able to prescribe the shape of 
the outer (or any internal) boundary of the plasma. It is not clear how to do this 
directly with Hamada coordinates, but we have devised an indirect method which 
makes use of a polar coordinate representation of the boundary. 

Consider a representation of a cross section of the boundary around its geometric 
centre at (R, Y) = (R,, 0) 

P = P,(e,), (72) 

where 0, is a polar angle around R, and p,(0,) is a prescribed function for the 
minor radius from R, to the boundary (Fig. 1). At any stage in the iteration over 
Hamada coordinates we have R and Y as functions of the Hamada angle 6 at the 
outer boundary V= I, RH(e), YH(0), which result from the integration of Eqs. 
(50)-(53) with some choice of initial conditions. 
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FIG. 1. Polar coordinate representation for the boundary of the plasma. 

From geometrical considerations, we can determine the polar angle and minor 
radius as a function of Hamada angle at any point along the boundary of the 
solution to the Hamada equations 

tan 0, = Yff(@ 
RAfj) - R, 

P’, = (R,(Q - 4,)’ + yzH(O 

(73) 

(74) 

We can then vary the M+ 2 free initial parameters in the solution of the Hamada 
equations in order to minimize the average distance between pH and pp. That is, we 
can minimize 

(75) 

where 11 . . . 11 is any reasonable choice of global norm. In particular, we have chosen 
to minimize the absolute value of the area between the prescibed and the Hamada 
boundary curves 

I 
2n 

0 
de, Id,-P;I. 

In principle, any shape (including indented boundaries) can be matched provided 
that the function p,(6),) is single-valued. A major modification would, however, be 
requred to treat situations where the plasma shape is determined by currents in 
external coils. 
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6. VERIFICATION AND RESULTS 

The algorithm has been coded and tested by comparing the results of the code 
with the exact equilibrium of Solev’ev [17, 191 for constant values of dp/dt,b and I. 
For this equilibrium 

Y.& [ Y2(R2-B)+%(R2-Rj)2 ) 1 (77) 

the parameters A, B, E and R, being constants. R, is the position of the magnetic 
axis and E is the ellipticity in the vicinity of the magnetic axis. The outer shape of 
the plasma was defined, as in Section 5, by specifying it in terms of the calculated 
Fourier coefficients (with respect to the polar angle) of the polar distance from an 
interior point (chosen at approximately the centre). 

The result from the code, Y,, was then compared with vl, by calculating the 
relative error averaged over a number N, flux surfaces and M, Hamada poloidal 
angles 0: 

(78) 

In addition the calculated position of the magnetic axis R, was compared with the 
analytic value. This was done for various numbers, M, of Fourier harmonics used 
in the specification of R and Y. Results for a typical comparison are given in 
Table I. These results are for the case for which A = 0.34906, B = 0, E = 1 .O, and 
R, = 3.0 and the average is taken over M, x N, = 32 x 10 points. 

Figure 2 shows graphs of the reduced Fourier coetlicients for this case. These 
show that the convergence of the Fourier series is fast and that the variation of the 
Fourier coefficients across the plasma is considerably reduced by the scaling of 
Eq. (57) and (58). The code is very fast and a single outward integration of the 
equations (with M = 4 and a specified relative error of 10e5 for the integration sub- 
routine takes approximately 14 set on the Flinders University Prime-750. The 

TABLE I 

Number of 
Fourier components 

Average relative 
error 

Position of 
magnetic axis 

M E Ro 

1 0.0347 
2 0.0034 
3 0.0006 
4 0.0007 

2.9403 
2.9971 
2.9999 
2.9998 

(exact 3.0000) 
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FIG. 2. Reduced Fourier coefficients as a function of the Hamada flux coordinate V for a Solev’ev 
equilibrium 
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FIG. 3. A high-beta (/?- 17%), low aspect ratio equilibrium (qax,s = I .O, qedge = 3.0) obtained using 
this algorithm. 
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parameter search for this case to fit the outer boundary took between 11 and 30 
integrations, depending on M and the accuracy required. This is in contrast to the 
time required to obtain an equilibrium using the iteration procedure of Ref. [ 171 
and to carry out the flux coordinate mapping as in Ref. [lo]. An increase in time of 
at least a factor of 10 would be required and in some cases (for a large number of 
required flux surfaces) this could increase to a factor nearer 100. 

An example is presented in Fig. 3 of the calculation of a high-beta (/I- 17%) 
equilibrium at a relatively low aspect ratio (~3) for a plasma with an 
approximately elliptical surface. For this case the safety factor q was specified with 
q(V) = 1.0 + 2.0 V* (0 d V< 1). This case was calculated with the number of 
Fourier coefficients, M= 4. This equilibrium, which was obtained by specifying 
R, = 3.0, R, =OS, Y, =O.S, R, =0.03 and R, =0.03 near the magnetic axis, is 
fairly sensitive to these Fourier coefficients. For example, a charge of R3 to 0.02 will 
produce a very much more D-shaped plasma. 
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